

Revisão - 0

Memorial de Cálculo - Imagem

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
7.18 m	15.18 m	15.88 m

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 3000.95 \text{ m}^2$

Dados do projeto

Classificação da estrutura

Nível de proteção: I

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 9.12/km² x ano

Definições padrão NBR 5419/2015 em referência ao nível de proteção

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido

Largura máxima da malha (método Gaiola de Faraday) = 5 m

Raio da esfera rolante (método Eletrogeométrico) = 20 m

Risco de perda de vida humana (R1) - Imagem

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Revisão - 0

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.37x10^-2/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	1
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	2x10^-2
$Pa = Pta \times Pb$	2x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	1x10^-4

 $Ra = Nd \times Pa \times La$

 $Ra = 2.74x10^{-8}/ano$

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	$5x10^{-1}$		
Ng (Densidade de descargas	0 12/km²	v ano	
atmosféricas para a terra)	9.12/km² x ano		
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.37x10^-2/ano		
Pb (Probabilidade de uma descarga na		2x10^-	2
estrutura causar danos físicos)		2X10''-	

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.5x10^-3

 $Rb = Nd \times Pb \times Lb$

 $Rb = 6.84 \times 10^{-7}$ ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.37x10^-2/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para	1x10^-2	1x10^-2
qual os DPS foram projetados)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Revisão - 0

Lc (valores de perda na zona considerada)

,	
Lo (Número relativo médio típico de vítimas por falha de sistemas	1x10^-3
internos devido a um evento perigoso)	
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lc = Lo x (nz/nt) x (tz/8760)	1x10^-3

 $Rc = Nd \times Pc \times Lc$

 $Rc = 2.72 \times 10^{-7/a}$

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	806653.71 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.36/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

A	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
$Pm.E = Pspd.E \times Pms.E, Pm.T = Pspd.T \times Pms.T$	1.6x10^-3	1x10^-2

Revisão - 0

$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2
	1.10/110 2

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lm = Lo x (nz/nt) x (tz/8760)	1x10^-3

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.52 \times 10^{-5} / ano$

Componente Ru (risco de ferimentos a seres vivos causados por descargas na linha conectada) Componente relativo a ferimentos aos seres vivos causados por choque elétrico devido às tensões d

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m²		40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km		n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/ano

Revisão – 0

Ndj (número de eventos perigosos para uma estrutura adjacente)

- 1. J (
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano	

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a	1
seres vivos devidos a tensões de toque perigosas)	1
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.01

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pu = Ptu \times Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lu (valores de perda na zona considerada)

Eu (valores de perda na zona considerada)	
rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	1x10^-4

$$Ru = Ru.E + Ru.T$$

$$Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$$

$$Ru = 4.38x10^{-8}/ano$$

Revisão - 0

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada) Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E) telecomun			ınicações (T)
Ll (Comprimento da seção de linha)	1000 n	1	1000 m	
$Al = 40 \times Ll$	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	8	9.12/ki	m² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10' \-2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

14d (numero de eventos perigosos para uma estrutura aujacente)				
	Linhas d	le	Linhas de	
	energia ((E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano	
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ıra qual	0.01		
os Di S iorani projetados)				

Revisão - 0

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

<u> </u>				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Pld (Probabilidade dependendo da resistência Rs da blindagem				
do cabo e da tensão suportável de impulso Uw do	1	1		
equipamento)				
Cld (Fator dependendo das condições de blindagem,	1	1		
aterramento e isolamento)	1	1		
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2		

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.5x10^-3

$$Rv = Rv.E + Rv.T$$

$$Rv = \left[(Nl.E + Ndj.E) \ x \ Pv.E \ x \ Lv \right] + \left[(Nl.T + Ndj.T) \ x \ Pv.T \ x \ Lv \right]$$

$$Rv = 1.09x10^{-6}/ano$$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Revisão – 0

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kr	m² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10 -2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Revisão - 0

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lw = Lo x (nz/nt) x (tz/8760)	1x10^-3

$$Rw = Rw.E + Rw.T$$

$$Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$$

$$Rw = 4.38x10^{-7/ano}$$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 n	1	1000 m	
Ai = 4000 x Ll	400000	00 m²	4000000	m²
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/ano

Revisão - 0

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10*-2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lz = Lo \times (nz/nt) \times (tz/8760)$	1x10^-3

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{\circ}-5/\text{ano}$$

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R1 = Ra + Rb + Rc + Rm + Ru + Rv + Rw + Rz$$

 $R1 = 1.26x10^{-4/ano}$

Risco de perdas de serviço ao público (R2) - Imagem

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Revisão - 0

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura) Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas	0.12/km²	v ano	
atmosféricas para a terra)	9.12/km² x ano		
$Nd = Ng \times Ad \times Cd \times 10^{-6}$ 1.37x10^-		-2/ano	
Pb (Probabilidade de uma descarga na		2x10^-	2
estrutura causar danos físicos)			

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
Lb = rp x rf x Lf x (nz/nt)	5x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 1.37 \times 10^{-7}$ ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.37x10^-2/ano

Revisão – 0

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

- A		
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
Lc = Lo x (nz/nt)	1x10^-2

 $Rc = Nd \times Pc \times Lc$

 $Rc = 2.72 \times 10^{-6}$ ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	806653.71 m ²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.36/ano

Revisão – 0

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

1 in (probabilitate de una descarga per to da estrutura edusar fama de sistemas internos)			
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2	
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1	
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1	
Ks3 (Fator relevante às características do cabeamento interno)	1	1	
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1	
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1	
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1	
$Pm.E = Pspd.E \times Pms.E, Pm.T = Pspd.T \times Pms.T$	1.6x10^-3	1x10^-2	
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2		

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
Lm = Lo x (nz/nt)	1x10^-2

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.52 \times 10^{-4} / ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	ınicações (T)
Ll (Comprimento da seção de linha)	1000 m	ı	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kr	m² x ano	

Revisão - 0

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10'\-2/all0

Ndi (número de eventos perigosos para uma estrutura adjacente)

1 (all (all all all all all all all all a				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		
Peb (Probabilidade em função do NP para qual		1		

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

1 · (probabilitation to alian dependence alian alian annua catalan dalios risteos)			
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1	
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1	
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2	

Lv (valores de perda na zona considerada)

Ev (varores de perda na zona considerada)	
rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
Lv = rp x rf x Lf x (nz/nt)	5x10^-4

Revisão - 0

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

 $Rv = 2.19x10^{-7}/ano$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

			0 1	
	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	micações (T)
Ll (Comprimento da	1000 n	2	1000 m	
seção de linha)	1000 III		1000 III	
Al = 40 x Ll	40000	m²	40000 m	2
Ng (Densidade de descargas	S	0.12/kg	m² v ono	
atmosféricas para a terra)	9.12/KI		12/km² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	1 0	8
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10° -2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Revisão – 0

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
Lw = Lo x (nz/nt)	1x10^-2

$$Rw = Rw.E + Rw.T$$

$$Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$$

$$Rw = 4.38x10^{-6}$$
ano

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Ai = 4000 \times L1$	400000	00 m²	4000000	m²
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Revisão – 0

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/4110

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Pli (Probabilidade de falha de sistemas internos devido a uma descarga perto da linha conectada dependendo das características da linha e dos equipamentos)	0.3	1
Cli (Fator que depende da blindagem, do aterramento e das condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	25
nt (Número total de pessoas na estrutura)	25
Lz = Lo x (nz/nt)	1x10^-2

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87x10^{-4}$$
ano

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$

$$R2 = 1.25 \times 10^{-3}$$
ano

Revisão - 0

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2
Estrutura	12.64x10^-5	1.25x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 12.64 \times 10^{-5}$ /ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-5

R2: risco de perdas de serviço ao público

 $R2 = 1.25 \times 10^{-3}$ ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-3

R3: risco de perdas de patrimônio cultural

Não avaliado

R4: risco de perda de valor econômico

Não avaliado

Revisão - 0

Memorial de Cálculo - Internações A e B

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
5.76 m	15.36 m	51.97 m

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 4051.64 \text{ m}^2$

Dados do projeto

Classificação da estrutura

Nível de proteção: I

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 9.12/km² x ano

Definições padrão NBR 5419/2015 em referência ao nível de proteção

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido Largura máxima da malha (método Gaiola de Faraday) = 5 m Raio da esfera rolante (método Eletrogeométrico) = 20 m

Risco de perda de vida humana (R1) - Internações A e B

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Revisão - 0

Nd (número de eventos perigosos para a estrutura)

	<u>. </u>
Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.85x10^-2/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	1
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	2x10^-2
$Pa = Pta \times Pb$	2x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	1x10^-4

 $Ra = Nd \times Pa \times La$

 $Ra = 3.69 \times 10^{-8}$

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	$5x10^{-1}$		
Ng (Densidade de descargas	9.12/km²	v ano	
atmosféricas para a terra)	9.12/KIII ⁻	x ano	
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.85x10^	-2/ano	
Pb (Probabilidade de uma descarga na			2
estrutura causar danos físicos)		2x10^-	

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.5x10^-3

 $Rb = Nd \times Pb \times Lb$

 $Rb = 9.24 \times 10^{-7}$ ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.85x10^-2/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para	1x10^-2	1x10^-2
qual os DPS foram projetados)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Revisão - 0

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lc = Lo x (nz/nt) x (tz/8760)	1x10^-3

 $Rc = Nd \times Pc \times Lc$

 $Rc = 3.68 \times 10^{-7/a}$

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	843800.1 m ²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.69/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

A	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
$Pm.E = Pspd.E \times Pms.E, Pm.T = Pspd.T \times Pms.T$	1.6x10^-3	1x10^-2

Revisão - 0

$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2
---	------------

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lm = Lo x (nz/nt) x (tz/8760)	1x10^-3

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.91 \times 10^{-5} / ano$

Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 n	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	3	9.12/kı	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/all0

Revisão - 0

Ndj (número de eventos perigosos para uma estrutura adjacente)

1 (a) (name to de exemple perigosos para ama estratara adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a	1
seres vivos devidos a tensões de toque perigosas)	1
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.01

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pu = Ptu \times Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lu (valores de perda na zona considerada)

Eu (valores de perda na zona considerada)	
rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	1x10^-4

$$Ru = Ru.E + Ru.T$$

$$Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$$

 $Ru = 4.38x10^{-8}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Revisão – 0

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		de Linhas de	
	energia (E)		a (E) telecomunicações (T	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000	00 m ² 40000 m ²		2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/km² x ano		

NI (Número médio anual de eventos perigosos devido a descargas na linha)

		<u>.</u>
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10*-2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

raj (numero de eventos perigosos para uma estrutura aujacente)				
	Linhas de		Linhas de	
	energia ((E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano	
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ıra qual	0.01		

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Revisão - 0

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.5x10^-3

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 1.09x10^{-6}$$
ano

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
Al = 40 x Ll	40000 m²		40000 m ²	2
Ng (Densidade de descargas atmosféricas para a terra)	9.12/ki		n² x ano	

Revisão - 0

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10 ^x -2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

· · · (1 · · · · · · · · · · · · · · · · · ·		,	
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2	
os DPS foram projetados)	TATO 2	1710 2	
Pld (Probabilidade dependendo da resistência Rs da blindagem			
do cabo e da tensão suportável de impulso Uw do	1	1	
equipamento)			
Cld (Fator dependendo das condições de blindagem,	1	1	
aterramento e isolamento)	1	1	
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2	

Lw (valores de perda na zona considerada)

<u> </u>	
Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lw = Lo \times (nz/nt) \times (tz/8760)$	1x10^-3

Revisão – 0

$$Rw = Rw.E + Rw.T$$

$$Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$$

 $Rw = 4.38x10^{-7/ano}$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da	1000 n	1	1000 m	
seção de linha) Ai = 4000 x Ll	400000)() m ²	4000000	m²
Ng (Densidade de descargas			m^2 x ano	
atmosféricas para a terra)		7.12/KI	in A uno	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	2.65/ana
Ct x 10^-6	1/ano	3.65/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10*-2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	1

Revisão - 0

D D I DI' CII'	2 104 2	1 104 2
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lz = Lo x (nz/nt) x (tz/8760)	1x10^-3

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{-5}$$
/ano

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R1 = Ra + Rb + Rc + Rm + Ru + Rv + Rw + Rz$$

$$R1 = 1.31x10^{-4/a}$$

Risco de perdas de serviço ao público (R2) - Internações A e B

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km²	x ano	
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.85x10^	-2/ano	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		2x10^-	2

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
Lb = rp x rf x Lf x (nz/nt)	5x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 1.85 \times 10^{-7/a}$

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

1 (a (116211101 0 620 0) 0111005 P 0111 8 0505	Pur u u usur ururu)
Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.85x10^-2/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
Lc = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rc = Nd \times Pc \times Lc$

 $Rc = 3.68 \times 10^{-6}$

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	843800.1 m ²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.69/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1.6x10^-3	1x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2	·

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
Lm = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.91 \times 10^{-4}$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	5	9.12/kr	m² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10*-2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

<u> </u>			<u> </u>
	Linhas d	le	Linhas de
	energia ((E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ıra qual	0.01	

Revisão - 0

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Ly (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
Lv = rp x rf x Lf x (nz/nt)	5x10^-4

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 2.19 \times 10^{-7/a}$$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

\			0 1	
	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	micações (T)
Ll (Comprimento da	1000 m	1	1000 m	
seção de linha)	1000 11	1	1000 111	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas	S	0.12/lz	m² x ano	
atmosféricas para a terra)		9.12/KI	n- x ano	

Revisão – 0

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10'\-2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

· · · (1 · · · · · · · · · · · · · · · · · ·		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	TATO 2	17.10 2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

,	
Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
Lw = Lo x (nz/nt)	1x10^-2

$$Rw = Rw.E + Rw.T$$

$$Rw = \left[(Nl.E + Ndj.E) \ x \ Pw.E \ x \ Lw \right] + \left[(Nl.T + Ndj.T) \ x \ Pw.T \ x \ Lw \right]$$

$$Rw = 4.38x10^{-6}/ano$$

Revisão - 0

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
Ai = 4000 x Ll	4000000 m²		4000000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	9.12/kr		n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Ci (Fator de instalação da	1	1	
linha)	1	1	
Ct (Fator do tipo de linha)	0.2	1	
Ce (Fator ambiental)	0.1	0.1	
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano	
Ct x 10^-6	1/ano		

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)		
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

MC-HLE-SPD-04 - INT - Internação A e B

Revisão - 0

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	75
nt (Número total de pessoas na estrutura)	75
Lz = Lo x (nz/nt)	1x10^-2

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{-4} / ano$$

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$

 $R2 = 1.29x10^{-3/a}$

MC-HLE-SPD-04 - INT - Internação A e B

Revisão - 0

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2
Estrutura	13.07x10^-5	1.29x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 13.07 \times 10^{-5}$ /ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-5

R2: risco de perdas de serviço ao público

 $R2 = 1.29 \times 10^{-3}$ ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-3

R3: risco de perdas de patrimônio cultural

Não avaliado

R4: risco de perda de valor econômico

Não avaliado

Revisão - 0

Memorial de cálculo - Serviço

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
5.18 m	27.27 m	49.08 m

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 4289.20 \text{ m}^2$

Dados do projeto

Classificação da estrutura

Nível de proteção: I

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 9.12/km² x ano

Definições padrão NBR 5419/2015 em referência ao nível de proteção

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido

Largura máxima da malha (método Gaiola de Faraday) = 5 m

Raio da esfera rolante (método Eletrogeométrico) = 20 m

Risco de perda de vida humana (R1) - Serviço

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Revisão - 0

Nd (número de eventos perigosos para a estrutura)

	. ,
Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{4}$	1.96x10^-2/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	1
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	2x10^-2
$Pa = Pta \times Pb$	2x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	1x10^-4

 $Ra = Nd \times Pa \times La$

 $Ra = 3.91x10^{-8}/ano$

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigo<u>sos para a estrutura)</u>

Cd (Fator de localização)	$5x10^{-1}$		
Ng (Densidade de descargas	9.12/km² x ano		
atmosféricas para a terra)			
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.96x10^-2/ano		
Pb (Probabilidade de uma descarga na		2x10^-	2
estrutura causar danos físicos)		2X10**-	٠٧

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.5x10^-3

 $Rb = Nd \times Pb \times Lb$

 $Rb = 9.78 \times 10^{-7}$ ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.96x10^-2/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para	1x10^-2	1x10^-2
qual os DPS foram projetados)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Revisão - 0

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lc = Lo x (nz/nt) x (tz/8760)	1x10^-3

 $Rc = Nd \times Pc \times Lc$

 $Rc = 3.89 \times 10^{-7}$ /ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	850106.36 m ²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.75/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

i in (probabilitate de dina desearga perto da estrutura ea	dour runna ac s	isternas miternos)
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1.6x10^-3	1x10^-2

Revisão - 0

$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2
$I III - I [(I I III.L) \times (I I III.I)]$	1.10/10 2

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lm = Lo x (nz/nt) x (tz/8760)	1x10^-3

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.98 \times 10^{-5}$

Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	5	9.12/km²		

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/all0

Revisão - 0

Ndj (número de eventos perigosos para uma estrutura adjacente)

1 (a) (mainer o de e ventos perigosos para ama estratara adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a	1
seres vivos devidos a tensões de toque perigosas)	1
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.01

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

/		
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pu = Ptu \times Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lu (valores de perda na zona considerada)

La (valores de perda ha zona considerada)	
rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	1x10^-4

$$Ru = Ru.E + Ru.T$$

$$Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$$

 $Ru = 4.38x10^{-8}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Revisão - 0

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Al = 40 \times Ll$	40000 m²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	s 9.12/kr		m² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Nl = Ng x Al x Ci x Ce x	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

ruj (numero de eventos perigosos para uma estrutura aujacente)				
	Linhas d	le	Linhas de	
	energia ((E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano	
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ra qual	0.01		

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Revisão - 0

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	2.5x10^-3

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 1.09x10^{-6}$$
ano

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	3	9.12/kı	m² x ano	

Revisão - 0

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Nl = Ng x Al x Ci x Ce x	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10 -2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

<u> </u>		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	1310 -2	1810 -2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

· (· · · · · · · · · · · · · · · · · ·	
Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lw = Lo \times (nz/nt) \times (tz/8760)$	1x10^-3

Revisão – 0

$$Rw = Rw.E + Rw.T$$

$$Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$$

 $Rw = 4.38x10^{-7/ano}$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas de	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Ai = 4000 \times Ll$	400000	00 m²	4000000	m²
Ng (Densidade de descargas atmosféricas para a terra)	5	9.12/kr	n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	2.65/ana
Ct x 10^-6	1/ano	3.65/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10*-2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	1

Revisão - 0

		I
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lz = Lo x (nz/nt) x (tz/8760)	1x10^-3

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{-5/a}$$

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R1 = Ra + Rb + Rc + Rm + Ru + Rv + Rw + Rz$$

$$R1 = 1.31x10^{-4/a}no$$

Risco de perdas de serviço ao público (R2) - Serviço

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km²	x ano	
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.96x10^	-2/ano	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		2x10^-	-2

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
Lb = rp x rf x Lf x (nz/nt)	5x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 1.96x10^{-7/ano}$

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	1.96x10^-2/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
Lc = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rc = Nd \times Pc \times Lc$

 $Rc = 3.89 \times 10^{-6}$

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	850106.36 m ²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.75/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1.6x10^-3	1x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2	·

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
Lm = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.98 \times 10^{-4}$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da	1000 m	,	1000 m	
seção de linha)	1000 11	1	1000 111	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas	8	0.12/lcr	n² x ano	
atmosféricas para a terra)		9.12/KI	II- X alio	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10°-2/ano

Ndi (número de eventos perigosos para uma estrutura adjacente)

riaj (namero de eventos perigosos para uma estrutura adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ra qual 0.0	01		

Revisão - 0

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-2
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
Lv = rp x rf x Lf x (nz/nt)	5x10^-4

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 2.19 \times 10^{-7/a}$$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

			0 1	
	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	micações (T)
Ll (Comprimento da	1000 n	2	1000 m	
seção de linha)	1000 11	1	1000 111	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas	S	0.12/lz	m² x ano	
atmosféricas para a terra)		9.12/KI	n- x ano	

Revisão - 0

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10 ^x -2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

1 (m) (manage are a control parages parages and a serior and and a control			
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano	

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

<u> </u>		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	1310 -2	1810 -2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
Lw = Lo x (nz/nt)	1x10^-2

$$Rw = Rw.E + Rw.T$$

$$Rw = \left[(Nl.E + Ndj.E) \ x \ Pw.E \ x \ Lw \right] + \left[(Nl.T + Ndj.T) \ x \ Pw.T \ x \ Lw \right]$$

$$Rw = 4.38x10^{-6}$$
ano

Revisão - 0

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	ınicações (T)
Ll (Comprimento da seção de linha)	1000 m	n	1000 m	
Ai = 4000 x Ll	400000	00 m²	4000000	m²
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10' -2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Revisão – 0

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	15
nt (Número total de pessoas na estrutura)	15
Lz = Lo x (nz/nt)	1x10^-2

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{\circ} - 4/\text{ano}$$

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$
$$R2 = 1.29x10^{-3}/ano$$

Revisão - 0

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2
Estrutura	13.15x10^-5	1.29x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 13.15 \times 10^{-5}$ /ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-5

R2: risco de perdas de serviço ao público

 $R2 = 1.29 \times 10^{-3}$ ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-3

R3: risco de perdas de patrimônio cultural

Não avaliado

R4: risco de perda de valor econômico

Não avaliado

Revisão - 0

Memorial de cálculo - Casa de Resíduos e GLP

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
3.67 m	4.26 m	16.11 m

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 893.28 \text{ m}^2$

Dados do projeto

Classificação da estrutura

Nível de proteção: I

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 9.12/km² x ano

Definições padrão NBR 5419/2015 em referência ao nível de proteção

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido

Largura máxima da malha (método Gaiola de Faraday) = 5 m

Raio da esfera rolante (método Eletrogeométrico) = 20 m

Risco de perda de vida humana (R1) - Casa de Resíduos e GLP

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Revisão - 0

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	4.07x10^-3/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	1
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	2x10^-2
$Pa = Pta \times Pb$	2x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	5.71x10^-7

 $Ra = Nd \times Pa \times La$

 $Ra = 4.65 \times 10^{-11}$

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas	9.12/km² x ano		
atmosféricas para a terra)			
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	4.07x10^	-3/ano	
Pb (Probabilidade de uma descarga na		2x10^-	2
estrutura causar danos físicos)		2X10*-	

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	1.43x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 1.16x10^{-8}/ano$

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	4.07x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Revisão - 0

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas	1x10^-3
internos devido a um evento perigoso)	1X10 -5
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lc = Lo x (nz/nt) x (tz/8760)	5.71x10^-6

 $Rc = Nd \times Pc \times Lc$

 $Rc = 4.63 \times 10^{-10}$ ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	796110.49 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.26/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
$Pm.E = Pspd.E \times Pms.E, Pm.T = Pspd.T \times Pms.T$	1.6x10^-3	1x10^-2

Revisão - 0

$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lm = Lo x (nz/nt) x (tz/8760)	5.71x10^-6

 $Rm = Nm \times Pm \times Lm$

 $Rm = 4.8 \times 10^{-7} / ano$

Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada) Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de

Componente relativo a ferimentos aos seres vivos, causados por choque eletrico devido as tensoes de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m²		40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	5	9.12/ki	m² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/ano

Revisão - 0

Ndj (número de eventos perigosos para uma estrutura adjacente)

		- c. c. c. j c. c c = c c j
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a	1
seres vivos devidos a tensões de toque perigosas)	1
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.01

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pu = Ptu \times Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lu (valores de perda na zona considerada)

Eu (valores de perda na zona considerada)	
rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	5.71x10^-7

$$Ru = Ru.E + Ru.T$$

$$Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$$

 $Ru = 2.5x10^{-10}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Revisão - 0

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m²		40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/km² x ano		

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Nl = Ng x Al x Ci x Ce x	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10 -2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

14dj (hamero de eventos perigosos para dina estrutura adjacente)				
	Linhas de		Linhas de	
	energia ((E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano	
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ra qual	0.01		

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Revisão - 0

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	1.43x10^-4

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 6.25 \times 10^{-8}$$
ano

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m²		40000 m ²	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	n² x ano	

Revisão - 0

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10*-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

· · · (1 · · · · · · · · · · · · · · · · · ·		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	IATO 2	17.10 2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

= " ("	
Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$Lw = Lo \times (nz/nt) \times (tz/8760)$	5.71x10^-6

Revisão - 0

$$Rw = Rw.E + Rw.T$$

$$Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$$

 $Rw = 2.5 \times 10^{-9}$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas de	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Ai = 4000 \times Ll$	400000	00 m²	4000000	m²
Ng (Densidade de descargas atmosféricas para a terra)	5	9.12/kr	n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/4110

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10' -2	1X10''-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	1

Revisão - 0

D D I DI' CII'	2 104 2	1 104 2
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lz = Lo x (nz/nt) x (tz/8760)	5.71x10^-6

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 2.21x10^{-7/ano}$$

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R1 = Ra + Rb + Rc + Rm + Ru + Rv + Rw + Rz$$

$$R1 = 7.78 \times 10^{-7}$$
ano

Risco de perdas de serviço ao público (R2) - Casa de Resíduos e GLP

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km²	x ano	
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	4.07x10^	-3/ano	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		2x10^-	2

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lb = rp x rf x Lf x (nz/nt)	5x10^-3

 $Rb = Nd \times Pb \times Lb$

 $Rb = 4.07x10^{-7}/ano$

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

- ' - (1
Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	4.07x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Lc (valores de perda na zona considerada)

- <u> </u>	
Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lc = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rc = Nd \times Pc \times Lc$

 $Rc = 8.11x10^{-7/ano}$

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	796110.49 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.26/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1.6x10^-3	1x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2	

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lm = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.41x10^{-4}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10°-2/ano

Ndi (número de eventos perigosos para uma estrutura adjacente)

14d) (numero de eventos perigosos para uma estrutura adjacente)					
	Linhas d	le	Linhas de		
	energia ((E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano		
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ıra qual	0.01			

Revisão - 0

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

<u> </u>		
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lv = rp x rf x Lf x (nz/nt)	5x10^-3

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 2.19 \times 10^{\circ}-6/ano$$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Revisão – 0

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10'\-2/all0

Ndi (número de eventos perigosos para uma estrutura adjacente)

raj (numero de eventos perigosos para uma estrutura adjacente)			
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano	

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

· · · (1 · · · · · · · · · · · · · · · · · ·		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	IATO 2	17.10 2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas	1x10^-2
internos devido a um evento perigoso)	
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lw = Lo x (nz/nt)	1x10^-2

$$Rw = Rw.E + Rw.T$$

$$Rw = \left[(Nl.E + Ndj.E) \ x \ Pw.E \ x \ Lw \right] + \left[(Nl.T + Ndj.T) \ x \ Pw.T \ x \ Lw \right]$$

$$Rw = 4.38x10^{-6}/ano$$

Revisão - 0

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas de	:
	energia	ı (E)	telecomur	nicações (T)
Ll (Comprimento da seção de linha)	1000 n	1	1000 m	
$Ai = 4000 \times L1$	400000)0 m²	4000000 1	m²
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10*-2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Revisão – 0

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lz = Lo x (nz/nt)	1x10^-2

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{\circ} - 4/\text{ano}$$

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$
$$R2 = 1.24x10^{-3}/ano$$

Revisão - 0

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2
Estrutura	0.07781x10^-5	1.24x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 0.07781x10^{-5}/ano$

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois R <= 10^-5

R2: risco de perdas de serviço ao público

 $R2 = 1.24 \times 10^{-3}$ ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R $> 10^{\circ}-3$

R3: risco de perdas de patrimônio cultural

Não avaliado

R4: risco de perda de valor econômico

Não avaliado

Revisão - 0

Memorial de cálculo - Subestação

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
5.23 m	6.98 m	22.78 m

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 1856.49 \text{ m}^2$

Dados do projeto

Classificação da estrutura

Nível de proteção: I

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 9.12/km² x ano

Definições padrão NBR 5419/2015 em referência ao nível de proteção

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido

Largura máxima da malha (método Gaiola de Faraday) = 5 m

Raio da esfera rolante (método Eletrogeométrico) = 20 m

Risco de perda de vida humana (R1) - Subestação

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Revisão - 0

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	8.46x10^-3/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	1
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	2x10^-2
$Pa = Pta \times Pb$	2x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	5.71x10^-7

 $Ra = Nd \times Pa \times La$

 $Ra = 9.66x10^{-11/a}$

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas	9.12/km²	v ano	
atmosféricas para a terra)	9.12/KIII X alio		
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	8.46x10^	-3/ano	
Pb (Probabilidade de uma descarga na			2
estrutura causar danos físicos)			

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	0
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	0

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada) Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	9.12/kr		n² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	2.65 v 100 2/one
Ct x 10^-6	3/ano	3.65x10^-2/ano

Revisão - 0

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m ²	0 m ²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a	1
seres vivos devidos a tensões de toque perigosas)	1
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.01

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pu = Ptu \times Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lu (valores de perda na zona considerada)

Eu (valores de perda na zona considerada)	
rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	5.71x10^-7

$$Ru = Ru.E + Ru.T$$

$$Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$$

 $Ru = 2.5x10^{-10}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Revisão – 0

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m		1000 m	
$Al = 40 \times Ll$	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Nl = Ng x Al x Ci x Ce x	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

riaj (numero de eventos perigosos para uma estrutura aujacente)				
	Linhas d	le	Linhas de	
	energia ((E)	telecomunicações (T)	
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²	
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25	
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano		0/ano	
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ra qual	0.01		

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Revisão - 0

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	0
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	0

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 0/ano$$

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R1 = Ra + Rb + Ru + Rv$$

$$R1 = 3.46 \times 10^{-10}$$
ano

Risco de perdas de serviço ao público (R2) - Subestação

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km²	x ano	
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	8.46x10^	-3/ano	
Pb (Probabilidade de uma descarga	na	2x10^-	$\overline{2}$

Revisão - 0

estrutura causar danos físicos)	
---------------------------------	--

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	0
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lb = rp x rf x Lf x (nz/nt)	0

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	8.46x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

Te (probabilidade de dina desearga na estrutura edusar fama a sistemas internos)			
	Linhas de	Linhas de	
	energia (E)	telecomunicações (T)	
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2	
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1	
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2	
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2		

Revisão - 0

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lc = Lo x (nz/nt)	1x10^-2

 $Rc = Nd \times Pc \times Lc$

 $Rc = 1.68 \times 10^{-6}$ ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	805585.82 m ²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.35/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
D 1/D 1 1771 1	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha	1	1
de uma estrutura)		
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento		
interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um	4x10^-1	1
sistema)		_
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1.6x10^-3	1x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2	

Revisão - 0

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lm = Lo x (nz/nt)	1x10^-2

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.51x10^{-4}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E) telecomunicações (nicações (T)	
Ll (Comprimento da seção de linha)	1000 n	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kı	m² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Nl = Ng x Al x Ci x Ce x	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		
Peb (Probabilidade em função do NP para qual os DPS foram projetados) 0.				

Revisão - 0

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Ly (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	0
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lv = rp x rf x Lf x (nz/nt)	0

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 0/ano$$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

\			0 1	
	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da	1000 m	1	1000 m	
seção de linha)	1000 11	1	1000 111	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas	S	0.12/lz	m² x ano	
atmosféricas para a terra)		9.12/KI	n- x ano	

Revisão – 0

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10'\-2/all0

Ndi (número de eventos perigosos para uma estrutura adjacente)

1 (a) (mamero de eventos perigosos para ama estrutura adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

· · · (1 · · · · · · · · · · · · · · · · · ·		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	IATO 2	17.10 2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas	1x10^-2
internos devido a um evento perigoso)	
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lw = Lo x (nz/nt)	1x10^-2

$$Rw = Rw.E + Rw.T$$

$$Rw = \left[(Nl.E + Ndj.E) \ x \ Pw.E \ x \ Lw \right] + \left[(Nl.T + Ndj.T) \ x \ Pw.T \ x \ Lw \right]$$

$$Rw = 4.38x10^{-6}$$
ano

Revisão - 0

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	nicações (T)
Ll (Comprimento da	1000 n	า	1000 m	
seção de linha)	1000 11		1000 111	
Ai = 4000 x Ll	400000	00 m^2	4000000	m²
Ng (Densidade de descargas	9.12/km ²		n² v ano	
atmosféricas para a terra)		7.12/KI	II A allo	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/4110

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10' -2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Revisão - 0

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lz = Lo x (nz/nt)	1x10^-2

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{-4} / ano$$

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$
$$R2 = 1.24x10^{-3}/ano$$

Revisão - 0

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2
Estrutura	0.000035x10^- 5	1.24x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 0.000035 \times 10^{-5}$ /ano

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois R $<= 10^{-5}$

R2: risco de perdas de serviço ao público

 $R2 = 1.24 \times 10^{-3}$ ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-3

R3: risco de perdas de patrimônio cultural

Não avaliado

R4: risco de perda de valor econômico

Não avaliado

Revisão - 0

Memorial de cálculo - Gases Medicinais

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

Altura (m)	Largura (m)	Comprimento (m)
3.61 m	3.06 m	8.49 m

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

 $Ad = 640.06 \text{ m}^2$

Dados do projeto

Classificação da estrutura

Nível de proteção: I

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 9.12/km² x ano

Definições padrão NBR 5419/2015 em referência ao nível de proteção

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido

Largura máxima da malha (método Gaiola de Faraday) = 5 m

Raio da esfera rolante (método Eletrogeométrico) = 20 m

Risco de perda de vida humana (R1) - Gases Medicinais

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Revisão - 0

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	2.92x10^-3/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

, , , , , , , , , , , , , , , , , , ,	
Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres	1
vivos devido a tensões de toque e de passo)	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	2x10^-2
$Pa = Pta \times Pb$	2x10^-2

La (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$La = rt \times Lt \times (nz/nt) \times (tz/8760)$	5.71x10^-7

 $Ra = Nd \times Pa \times La$

 $Ra = 3.33x10^{-11/ano}$

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas	9.12/km² x ano		
atmosféricas para a terra)			
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	2.92x10^-3/ano		
Pb (Probabilidade de uma descarga na		2x10^-	2
estrutura causar danos físicos)		2X10"-	٠٧

Revisão - 0

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	1.43x10^-4

 $Rb = Nd \times Pb \times Lb$

 $Rb = 8.33 \times 10^{-9} \text{ ano}$

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	2.92x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Revisão - 0

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas	1x10^-3
internos devido a um evento perigoso)	1X10 -5
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lc = Lo x (nz/nt) x (tz/8760)	5.71x10^-6

 $Rc = Nd \times Pc \times Lc$

 $Rc = 3.31x10^{-10}$ ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	787247.83 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.18/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

A	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
$Pm.E = Pspd.E \times Pms.E, Pm.T = Pspd.T \times Pms.T$	1.6x10^-3	1x10^-2

Revisão - 0

$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2
---	------------

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lm = Lo x (nz/nt) x (tz/8760)	5.71x10^-6

 $Rm = Nm \times Pm \times Lm$

 $Rm = 4.75 \times 10^{-7}$ ano

Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada) Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	ınicações (T)
Ll (Comprimento da seção de linha)	1000 m	ı	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	5	9.12/ki	m² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/ano

Revisão - 0

Ndj (número de eventos perigosos para uma estrutura adjacente)

1 (a) (mainer o de e ventos perigosos para uma escravara adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		

Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a	1
seres vivos devidos a tensões de toque perigosas)	1
Peb (Probabilidade em função do NP para qual os DPS foram projetados)	0.01

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pu = Ptu \times Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Lu (valores de perda na zona considerada)

Eu (valores de perda ha zona considerada)	
rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-2
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	5.71x10^-7

$$Ru = Ru.E + Ru.T$$

$$Ru = [(Nl.E + Ndj.E) \times Pu.E \times Lu] + [(Nl.T + Ndj.T) \times Pu.T \times Lu]$$

 $Ru = 2.5x10^{-10}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Revisão - 0

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas atmosféricas para a terra)	S	9.12/kr	m² x ano	

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10°-2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

14d (numero de eventos perigosos para uma estrutura adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		
Peb (Probabilidade em função do NP pa	ra qual			

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

os DPS foram projetados)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Revisão - 0

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	5
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	1.43x10^-4

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 6.25 \times 10^{-8}$$
ano

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de		Linhas de	
	energia (E)		telecomunicações (T)	
Ll (Comprimento da seção de linha)	1000 m	ı	1000 m	
$Al = 40 \times Ll$	40000	m²	40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)	8	9.12/kı	m² x ano	

Revisão - 0

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03x10 ^x -2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

1 (a) (name o de eventos perigosos para ama estratara adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	2200 00 82800222008	11100)
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

/	
Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
$Lw = Lo \times (nz/nt) \times (tz/8760)$	5.71x10^-6

Revisão - 0

$$Rw = Rw.E + Rw.T$$

$$Rw = [(Nl.E + Ndj.E) \times Pw.E \times Lw] + [(Nl.T + Ndj.T) \times Pw.T \times Lw]$$

 $Rw = 2.5 \times 10^{-9}$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da	1000 n	1	1000 m	
seção de linha) Ai = 4000 x Ll	400000)() m ²	4000000	m²
Ng (Densidade de descargas			m^2 x ano	
atmosféricas para a terra)		7.12/KI	in A uno	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/4110

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10*-2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	1

Revisão - 0

Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2
~ r **		

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-3
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	50 h/ano
Lz = Lo x (nz/nt) x (tz/8760)	5.71x10^-6

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 2.21x10^{-7/ano}$$

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R1 = Ra + Rb + Rc + Rm + Ru + Rv + Rw + Rz$$

$$R1 = 7.69x10^{-7/a}no$$

Risco de perdas de serviço ao público (R2) - Gases Medicinais

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km²	x ano	
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	2.92x10^	-3/ano	
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		2x10^-	2

Revisão - 0

Lb (valores de perda na zona considerada)

25 (valores de perda na zona considerada)	
rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lb = rp x rf x Lf x (nz/nt)	5x10^-3

 $Rb = Nd \times Pb \times Lb$

 $Rb = 2.92x10^{-7/ano}$

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

1 (a (116211101 0 620 0) 0111000 P 0111 8 00000	Pur u u usur ururu)
Cd (Fator de localização)	5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	2.92x10^-3/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
$Pc.E = Pspd.E \times Cld.E, Pc.T = Pspd.T \times Cld.T$	1x10^-2	1x10^-2
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1.99x10^-2	

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lc = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rc = Nd \times Pc \times Lc$

 $Rc = 5.81 \times 10^{-7}$

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	9.12/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	787247.83 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	7.18/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1x10^-2	1x10^-2
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	2.5	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	4x10^-1	1
$Pms = (Ks1 \times Ks2 \times Ks3 \times Ks4)^2$	1.6x10^-1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1.6x10^-3	1x10^-2
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1.16x10^-2	·

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lm = Lo x (nz/nt)	1x10^-2

Revisão - 0

 $Rm = Nm \times Pm \times Lm$

 $Rm = 8.32 \times 10^{-4} / ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	nicações (T)
Ll (Comprimento da	1000 m	,	1000 m	
seção de linha)	1000 11	1	1000 111	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas	8	0.12/lcr	m² v ono	
atmosféricas para a terra)	9.12/km² x ano			

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10°-2/ano

Ndi (número de eventos perigosos para uma estrutura adjacente)

ruj (numero de eventos perigosos para uma estrutura adjacente)				
	Linhas de	Linhas de		
	energia (E)	telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano		
Peb (Probabilidade em função do NP pa os DPS foram projetados)	ra qual 0.0	01		

Revisão - 0

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pv = Peb \times Pld \times Cld$	1x10^-2	1x10^-2

Ly (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1x10^-1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lv = rp x rf x Lf x (nz/nt)	5x10^-3

$$Rv = Rv.E + Rv.T$$

$$Rv = [(Nl.E + Ndj.E) \times Pv.E \times Lv] + [(Nl.T + Ndj.T) \times Pv.T \times Lv]$$

$$Rv = 2.19 \times 10^{\circ}-6/\text{ano}$$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

\ 1 3 1			0 1	
	Linhas	de	Linhas d	e
	energia	ı (E)	telecomu	micações (T)
Ll (Comprimento da	1000 m	1	1000 m	
seção de linha)	1000 11	1	1000 111	
$Al = 40 \times Ll$	40000	m²	40000 m	2
Ng (Densidade de descargas	S	0.12/lz	n² x ano	
atmosféricas para a terra)		9.12/KI	n- x ano	

Revisão – 0

Nl (Número médio anual de eventos perigosos devido a descargas na linha)

	1 0	0
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
$Nl = Ng \times Al \times Ci \times Ce \times$	7.3x10^-	3.65x10^-2/ano
Ct x 10^-6	3/ano	3.03X10 -2/all0

Ndj (número de eventos perigosos para uma estrutura adjacente)

1 (a) (11 and 1 and 1 and 2 and 2 and 3 an		
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
$Ndj = Ng \times Adj \times Cdj \times Ct \times 10^{-6}$	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

<u>u</u>		,
	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual	1x10^-2	1x10^-2
os DPS foram projetados)	1310 -2	1810 -2
Pld (Probabilidade dependendo da resistência Rs da blindagem		
do cabo e da tensão suportável de impulso Uw do	1	1
equipamento)		
Cld (Fator dependendo das condições de blindagem,	1	1
aterramento e isolamento)	1	1
$Pw = Pspd \times Pld \times Cld$	1x10^-2	1x10^-2

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas	1x10^-2
internos devido a um evento perigoso)	
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lw = Lo x (nz/nt)	1x10^-2

$$Rw = Rw.E + Rw.T$$

$$Rw = \left[(Nl.E + Ndj.E) \ x \ Pw.E \ x \ Lw \right] + \left[(Nl.T + Ndj.T) \ x \ Pw.T \ x \ Lw \right]$$

$$Rw = 4.38x10^{-6}$$
ano

Revisão - 0

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas	de	Linhas d	e
	energia	a (E)	telecomu	micações (T)
Ll (Comprimento da seção de linha)	1000 m	1	1000 m	
Ai = 4000 x L1	400000	00 m²	4000000	m²
Ng (Densidade de descargas atmosféricas para a terra)	8	9.12/kı	m² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Ci (Fator de instalação da	1	1
linha)	1	1
Ct (Fator do tipo de linha)	0.2	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x	7.3x10^-	3.65/ano
Ct x 10^-6	1/ano	3.03/4110

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de	Linhas de
	energia	telecomunicações
	(E)	(T)
Pspd (Probabilidade em função do nível de proteção para qual os	1x10^-2	1x10^-2
DPS foram projetados)	1X10*-2	1X10*-2
Pli (Probabilidade de falha de sistemas internos devido a uma		
descarga perto da linha conectada dependendo das	0.3	1
características da linha e dos equipamentos)		
Cli (Fator que depende da blindagem, do aterramento e das	1	1
condições da isolação da linha)	1	
Pz = Pspd x Pli x Cli	3x10^-3	1x10^-2

Revisão – 0

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	1
nt (Número total de pessoas na estrutura)	1
Lz = Lo x (nz/nt)	1x10^-2

$$Rz = Rz.E + Rz.T$$

$$Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$$

$$Rz = 3.87 \times 10^{\circ} - 4/\text{ano}$$

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

$$R2 = Rb + Rc + Rm + Rv + Rw + Rz$$
$$R2 = 1.23x10^{-3/a}$$

Revisão - 0

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2
Estrutura	0.07693x10^-5	1.23x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 0.07693 \times 10^{-5} / ano$

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois R <= 10^-5

R2: risco de perdas de serviço ao público

 $R2 = 1.23x10^{-3}/ano$

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R $> 10^{\circ}-3$

R3: risco de perdas de patrimônio cultural

Não avaliado.

R4: risco de perda de valor econômico

Não avaliado.